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Abstract.  In number theory, a partition of a positive integer n is a way of writing n as a sum of positive 
integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum 
information processing, we extend the concept of partitions in number theory as follows: for an integer 
n, we treat each partition as a basis state of a quantum system representing that number n, so that the 
Hilbert-space that corresponds to that integer n is of dimension p(n); the “classical integer” n can thus 
be generalized into a (pure) quantum state �)(| n�  which is a superposition of the partitions of n, in 

the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, )(n�  is a 
density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the 
notion of quantum numbers in quantum theory (such as in Bohr`s model of the atom), we then try to go 
beyond the partitions, by defining (via recursion) the notion of “sub-partitions” in number theory. 
Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide 
an alternative definition of the quantum integers [the pure-state �)('| n�   and the mixed-state  

)(' n� ], this time using the sub-partitions as the basis states instead of the partitions, for describing the 
quantum number that corresponds to the integer n.   
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INTRODUCTION 

In number theory, a partition of a positive integer n is a way of writing n as a sum 
of positive integers. At a first glance, it appears that there is no difference whether one 
writes 1+1=2 or 2=1+1. But a closer observation shows that there may be a 
meaningful intuitive difference between these expressions: The first is a simple 
addition exercise between two numbers, while the latter describes a possible 
representation of the integer 2 as a sum of two (smaller) integers. The Trivial 
Representation 2=2 serves as another representation for the number 2. In number 
theory, a partition is only made up of the numbers being summed and not from the 
order of the summation. For instance, all of the partitions of the integer 5 are: 

5=5 
5=4+1 
5=3+2 



5=3+1+1 
5=2+2+1 
5=2+1+1+1 
5=1+1+1+1+1 
 
Two sums that differ only in the order of their summands are considered to be the 

same partition (if the order also matters, the resulting set will not be called a partition 
anymore). A summand in a partition is also called a part and the number of partitions 
of n is given by the partition function p(n).  

As a few other simple examples, 3, 2+1, and 1+1+1 are the three partitions of the 
integer 3, and 4, 3+1, 2+2, 2+1+1, and 1+1+1+1 are the partitions of 4.  Note that 
p(1)=1, p(2)=2, p(3)=3, p(4)=5, and p(5)=7. It is interesting to mention that there 
aren’t any explicit formulas yet that calculate the Partition Function for a given n. 

To keep tracks of all partitions, we follow the method used in Wikipedia’s entry 
“Partition (number theory)”, and we write the larger number at the left-hand-side, so 
3+1 appears here, while 1+3 (which corresponds to the same partition) does not 
appear. We also order the partitions by writing the partition having the larger number 
prior to the one having the smaller number, so that the partition 3+1 appears before 
the partition 2+2, and 2+2 appears before 2+1+1.    

The different partitions of a number n describe something that resembles 
indistinguishability of items, e.g., if we talk about three similar items we might prefer 
to use the partition 3, while if we talk about two similar items and one which is 
different from them, we might prefer to use the partition 2+1. It is important to 
mention that the concept of partition has various uses in mathematics and physics, e.g., 
in group theory. 

Here we extend the notion of partitions in two very different directions, and then 
we also combine the two directions. First, inspired by quantum information 
processing, we extend the concept of partitions in number theory as follows: for an 
integer n, we treat each partition as a basis state of a quantum system representing the 
number n, so that the Hilbert-space that corresponds to that integer n is of dimension 
p(n); the “classical integer” n can thus be generalized into a (pure) quantum state 
which is a superposition of the partitions of n. This resembles the way a qubit is 
defined to be a generalization of a bit. More generally (and this is also true for the 
qubit of course), one can define a mixture of such quantum pure states, which is a 
density matrix in that same Hilbert-space.  

Second, inspired by the notion of quantum numbers in quantum theory, such as n, l, 
and m that describe energy, angular momentum and the z-direction angular 
momentum in Bohr`s model of the atom, we try to go beyond the partitions. We define 
the notion of “sub-partitions”; this is done via using a recursion, and by the removal of 
redundant terms.  

Finally, combining the two notions mentioned above, sub-partitions and quantum 
integers, we finally provide a second definition for the quantum integers, states (pure 
or mixed) that live in larger Hilbert-spaces, defined using the sub-partitions as the 
basis states instead of the partitions. 

 



QUANTUM INTEGERS 

We define the set that contains the partitions of n to be Par(n). For instance, Par(5) 
is the "partition set of the number 5". We call each of these partitions in the set, an 
element of Par(5).  E.g. {3+2}   and {4+1} are elements of Par(5). For every positive 
integer n, the Partition Function, p(n), which gives the number of different ways to 
partition a number, is the number of elements in Par(n).  

One can define a probability distribution over the partition. E.g. for Par(5) we may 
define Prob({5})=p   and Prob({4+1})=1-p.  This probability distribution can be 
viewed as a (classical) generalization of the number 5. Inspired by quantum 
mechanics, we define a quantum variant of the natural numbers: For this, we use the 
bracket notation, and we let each partition be a basis state. E.g., the basis states for the 
number 5 are ��� 5|| 1� , ���� 14|| 2� , …, ������� 11111|| 7� .  

 The above classical probability distribution can then be written as having the state 
��� 5|| 1�  with probability p and having the state ���� 14|| 2� with probability 1-p. 

Using these basis states, one can now easily go beyond the classical probability 
distribution, and define (in analogy to the definition of a qubit) pure quantum states to 
be superpositions of these basis states, and mixed quantum states to be mixtures of 
such pure states. As an example, ������ 14|)sin(5|)cos()5(| ���  is an example 
of a pure state, namely a superposition of orthogonal basis states. Finally, here is an 
example of a mixed quantum state (a probability distribution over quantum states):  

)5(� � |1111111111|)1(|| ����������	��� qq �� , with ��|  being a 
superposition of the seven basis states written above.  

Remark: An important feature of the quantum numbers model is a possibility to 
realize number-theoretic representations of dimensions different from 2n . We remark 
that such spaces arise naturally in some models of quantum computing. As an example 
we can mention realization of clusters of entangled ions via interaction with laser 
pulses, see [1]. This is a consequence of appearance of so called dark levels. It might 
be that the construction presented in this paper would be useful for the mathematical 
representation of such models or others. 
 

 
SUB-PARTITIONS 

 
When we take a specific partition of a number n we may ask define sub-partitions. 

Say, if n=k+m is a partition of n, we can now consider a sub-partition using the fact 
that (for instance) k=t+s, namely using the partition of each of the summands. We 
here assume that this is different from simply taking the “other” partition n=t+s+m 
(after a proper ordering of the elements), since we want the sub-partition to be an 
internal process, defined after we already “finished” the partition (as if we are now 
sorting according to a different property). This resembles the way we write quantum 
numbers in Bohr`s model of the atom: we first divide according to the energy, and 
then for each energy we perform a further division according to the angular 
momentum, etc. 



As our first example, we can see that the two partitions of the number 2, namely {2} 
and {1+1} (where we use the set notations as in the previous section), cannot yield 
anything new if we try to perform a sub-partition, as the two counted items can either 
be identical (which corresponds to the partition {2}) or different (which corresponds to 
the partition {1+1}). There is nothing more to do in this case. For the number 2, there 
are two partitions, and furthermore, there are also just two sub-partitions, and these are 
identical to its partitions. Looking at this differently: any attempt to have additional 
sub-partitions (further partitioning of {1+1} or of {2}) will lead via recursion to an 
infinite number of such sub-partitions.   

As a more interesting example, if {3}, {2+1}, and {1+1+1}, are the partitions of 3, 
we believe that now it does make sense to look at second-level partitions.  As before, 
it is clear that it is meaningless to perform sub-partitions on the partition (1+1+1), and 
on the partition {3}, as this would lead again to an infinite number of sub-paritions via 
recursion. Thus, using the number 3 to help us finding a proper definition, we see that 
recursions may be used, yet must be applied carefully. For instance, in that case, it 
only makes sense to perform a sub-partition on the element {2+1} only. The number 2 
has two different partitions “partition-a” which is {2} and “partition-b” which is 
{1+1}. The process of performing a sub-partition on the number 3 by using a partition 
of the number 2, will thus lead to splitting the partition {2+1} into two sub-partitions: 
if we replace the summand 2 in the element {2+1} by its “partition-a” we get {{2}+1} 
and if we replace the summand 2 in the element {2+1} by its “partition -b” we get 
{{1+1}+1}. As this results from a sub-partitioning of the original partition {2+1} we 
consider the element {{1+1}+1} to be different from the element {1+1+1}, for the 
reasoning explained above (inspired by Bohr`s model): the first partition corresponds 
to one property (say, the energy) and the additional partitioning corresponds to an 
internal property (say, the angular momentum). 

For the number 3, we noticed that the elements {3} and {1+1+1}, obtained at the 
first level of partition, cannot be further partitioned, and it only makes sense to 
consider further partitioning of {2+1}. After the second level of partition, we thus 
obtain four sub-partitions for the number 3: 
{3} 
{{2} +1} 
{{1+1} +1} 
{1+1+1+1} 

Note that after the first partition we had {3}, {2+1} and {1+1+1}, therefore the 
notation we use here helps us to distinguish a partition such as {2+1} from a sub-
partition such as {{2}+1}: note the set sign on the number 2, telling us that the process 
of sub-partitioning ended. 

In the general case, for a partition of an integer n, in the first level of recursion, 
each element different from 1 and different from n, is replaced by its partition: Only 
the partition {n} and the partition {1+1…+1} do not go through a sub-partitioning, yet 
all other terms do. The partition {(n-1) +1} for instance, is replaced by {{} +1} in this 
first level of recursion, where each partition of n-1 (inserted in the internal parenthesis 
{}) yields a different sub-partition of the type {{} +1}. One of these sub-partitions is 
{{n-1}+1}, that will not go through another sub-partitioning in the next level of 
recursion (as is true for any term k directly inserted in these {} parenthesis), yet terms 



like {{(n-2)+1}+1} or {{(n-3)+2}+1} or {{(n-3)+1+1}+1} will go through sub-
partitioning in the next level of recursion (this is relevant for n larger than 4).  In 
general, terms that looked like {a1+a2+…+ak} in the original partition are now (after 
that sub-partitioning) containing at least two summands, where each summand ai is 
either the number 1, or it is replaced by {} where any partition of ai can be inserted in 
these {} parentheses. For the number 3, there is no need for a second recursion, but in 
general there can be many levels of recursion. At the second level of recursion the 
same process applies, and the deepest level of recursion ends only when any term k 
appears directly inside these parenthesis {}. This is why {2+1} did not describe a sub-
partition at the end of the process, while {{2} +1} describes such a sub-partition. 

Let us now look at the number 4. The standard process leads to the partitions {4}, 
{3+1}, {2+2}, {2+1+1}, and {1+1+1+1}. For the reasons explained above, we only 
need to perform a sub-partitioning on the summands 2 and 3. From the regular 
partition of the number 2 in the partition {2+1+1} we get two sub-partitions 
{{2}+1+1}, and {{1+1}+1+1}.  From the partition {3+1} we get the following sub-
partitions using the regular partition of the number 3: {{3}+1}, {{2+1}+1}, 
{{1+1+1}+1},  then using an additional level of recursion (this time on the summand 
2 that appears in the term {{2+1}+1}) we finally obtain: {{3}+1}, {{2}+1}+1}, 
{{{1+1}+1}+1},  {{1+1+1}+1}.  Note that the same result can be obtained directly 
using all sub-partitions of 3, instead of using its partition plus a second level of 
recursion. 

We see that terms that look like {k+1} have a recursion over the number k. 
Obviously, terms that look like {m+k} have recursions over both m and k. However, 
we’ll now see that there are some redundant elements in this case, if m=k: When we 
take the partition {2+2} and perform sub-partitioning of it we get {{2} {2}}, {{1+1} 
{2}}, {{2} {1+1}}, and {{1+1} {1+1}}. The second and third elements are identical 
once we ignore the order, thus one of them must be removed. We are finally left with 
the following 11 terms for the sub-partitions of 4: 
{4}, then {{3}+1}, {{2}+1}+1}, {{{1+1}+1}+1}, and {{1+1+1}+1}, then {{2}{2}}, 
{{2}{1+1}}, and {{1+1}{1+1}}, then {{2}+1+1}, and {{1+1}+1+1}, and finally 
{1+1+1+1}. 

Note that each step in the recursion corresponds to adding internal parenthesis. E.g., 
{3+1} is replaced by {{} +1} where we then input into {} all possible sub-partitions of 
3.  Similarly, when we calculate the sub-partitions of the number 5, we can make use 
of our earlier knowledge regarding all sub-partitions of 2, 3, and 4.  This will lead to 
replacing each partition of 5 (except the trivial ones {5} and {1+1+1+1+1}) by the 
relevant sub-partitions, so that {4+1} is replaced by 11 elements, {3+2} is replaced by 
8 elements, etc. For the number 5, the removal of redundancy also exists, as the 
partition {2+2+1} gives the sub-partitions {{2}+{1+1}+1} and {{1+1}+{2}+1} which 
are identical, and we keep only the first one. 

Let us show now explicitly that there are 30 different sub-partitions of 5: The 
partitions {5} and {1 + 1 + 1 + 1 + 1} do not have sub-partitions. The partitions 
{4+1}, {3+1+1}, and {2+1+1+1} contribute 11, 4, and 2 sub-partitions respectively, 
and the partition {3+2} contributes 2 times 4, namely 8 sub-partitions. Finally, the 
partition {2+2+1} contributes 4 terms, but one of them is removed due to redundancy, 
leading to a total of 3 here, and a total of 30 altogether.  



 
 
 
 
 
 
 
 
When we calculate the sub-partitions of the number 6, we need to remove 

redundancy that will result from the terms {3+3}, {2+2+2}, and {2+2+1+1}. The total 
number of partitions and sub-partitions for n=1...6 is given in Table 1. 

The generalization now from these classical sub-partitions to a quantum integer 
based on the resulting Hilbert space is straight forward: We only need to replace the 
basis states that were defined in Section 2 (the partitions) by the sub-partitions defined 
here. E.g., the quantum integer 3 lives in a four-dimensional Hilbert-space in this case, 
instead of a three-dimensional one, and the quantum integer 4 lives in 11-dimensional 
Hilbert-space instead of a five-dimensional one.  

Remark: The quantum representation on the number theoretic construction of this 
paper is a natural generalization of the quantum representation based on expansions of 
natural numbers 
 �0,..., 2 1nx� 	  with respect to 2-adic scale: 

1
0 1 12 ... 2 , 0,1n

n jx x x x x	

	� � � � � . 

This standard representation provides the enumeration of the basic vectors 0 1 1... nx x x 	  

in the n-qubit space by natural numbers: 0 1 1... nx x x x 	
 . The main distinguishing 
feature of the representation constructed in this paper is the possibility to proceed with 
sub-partitions which is impossible to do in the standard n-qubit representation. 

 
 

SUMMARY 
 

We generalized the notion of integers into quantum integers. The motivation for 
that is currently purely abstract, yet we believe that this is an interesting concept that 
might have important impact in the future. One should also give some thought to the 
meaning of the classical probability distribution that corresponds to an integer. In 
particular, one may wonder what happens when such a number (the classical one or 
the quantum one) is observed, namely measured, to yield a specific partition (or sub-
partition). One may also wonder about the non-classical bases, e.g., the Hadamard 
basis in case of the quantum number 2.  

In general, combining notions from number theory with concepts from quantum 
theory and quantum information processing might be found beneficial to either field, 
although we cannot see a specific application yet. 

We also performed a non-trivial step beyond the well-known concept of “partition”, 
by defining sub-partitions using the process of recursion (while removing the 
redundant elements). To the best of our knowledge this is also a novel concept in 
number theory. Yet, it is important to mention here that a recent paper by Shadmi and 

TABLE 1. Sub-partitions of small integers  
The number N Partitions on N Number of sub-partitions 

1 1 1 
2 2 2 
3 3 4 
4 5 11 
5 7 30 
6 11 96 



Klein [2] (also presented in [3]) already discussed a notion quite similar to our sub-
partitions (they call their method “Organic Numbers”), which is also based on 
recursion and removal of redundancy, but their definition is not identical to ours.  

Finally, we combined the two ideas to define an even more general concept of 
quantum integers, yet as before, we cannot see a specific application for that 
generalization yet.  
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