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Abstract— The model developed by the authors for strongly 
focused HIFU [2] was verified experimentally. The verification 
was performed for 1.03 MHz focusing transducer loaded by the 
water. The transducer comprised spherical piezo-element 
immersed in the mineral oil and had aperture diameter 84 mm. 
and focal radius 54 mm. At the first step, acoustic field 
distribution in a plane, which was close and parallel to the focal 
plane, was measured at 10 W of input electric power. Using this 
data, the normal velocity distribution over the plane which is 
tangent to the centre point of the spherical radiator was 
reconstructed. This distribution was further scaled and served as 
boundary conditions for calculation of high intensity field 
distribution using approach described in [2]. At the second step 
the model predictions were compared with the data extracted 
from the acoustical pressure waveforms measured for different 
values of the output acoustic power. In addition to usually 
extracted pressure harmonic content, the spatial distributions of 
harmonics of on-axis projection of particle velocity have been 
obtained from pressure harmonic distributions with the angle 
spectrum expansion, providing connection between pressure and 
particle velocity harmonics. 

The predictions of the pressure positive and negative peaks, 
harmonic content and dependence of the harmonic effective 
propagation angle on the harmonic number fitted closely the 
corresponding experimental results. The proposed approach 
allows accurate prediction of strongly focused HIFU fields based 
on the measurements of low-intensity field distributions. 

Keywords: KZK equation, Westervelt equation, strongly 
focused high intensity ultrasound. 

I. INTRODUCTION 

Therapeutic ultrasound used for the treatment of 
subcutaneous tissues requires the application of strongly 
focused transducers which can create high intensity field 
within the target volume, yet not harming the surrounding 
tissues and the skin. As the half-aperture angle of focusing 
transducer grows, some of widely used theoretical models of 
HIFU, such as KZK equation, become invalid. To overcome 
the limitations of paraxial approximation a number of methods 
have been developed in the last decade. The one proposed in 
[1] allows accurate HIFU description for the half-aperture 
angles of focusing transducers up to 30-40 degrees. The 
approach developed in [2] has presumably a wider range of 
valid angles. It employs the concept of effective propagation 
angle which relates the amplitudes of pressure (divided by 
impedance) and on-axis projection of the particle velocity at 
focus. The goal of this work is to verify experimentally the 
model proposed in [2]. 

II. THEORY

The model developed in [2] is an asymptotic one-way 
propagation approximation of Westervelt equation: 
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Here  is a nonlinearity parameter, p, (x,y,z) and t are, 
respectively, dimensionless acoustical pressure, Cartesian 
coordinates and time, which are normalized by Po=uo oco,
ko=2 fo/co and o=2 fo correspondingly. The model describes 
an acoustic field radiated by focusing transducer which has 
radius of curvature F, aperture d, and is loaded by liquid 
having ambient sound speed co and density o. The surface of 
the radiator vibrates with the characteristic normal velocity 
amplitude uo and frequency fo in continue wave (CW) mode. 
Transducer acoustic axis is directed along z.

The CW solution of (1) can be expanded into Fourier 
series: 
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The effective angle  introduced in (2) relates pressure and z-
projection of particle velocity at focus (p=u/cos ) within the 

framework of the linear consideration. It is approximately 2
times less than the half aperture angle of a transducer. The 
truncated equations, which have been obtained in [2] from (1), 
describe the evolution of a finite set of pressure harmonics 
with respect to z coordinate: 
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The phenomenological dissipation term is introduced into (3) 
to describe the power law of harmonics attenuation which is 
specified by the parameter µ. The substitution 
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which has been used for obtaining (3) is the retarded 
coordinate ( =t-zcos ) version of linear connection between 
acoustic pressure and z-projection of particle velocity: 
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It has been noted in [2] that the local connection between 

nu and np
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is approximately kept for weak shock waves as it follows from 
numerical simulations. The experimental verification of the 
connection is the one of main issues of the presented study. 

Equations (3) can be solved using modified parabolic
approximation proposed in [3]: 
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along with the appropriate equivalent boundary condition and   
operator split method. 

The procedure of the equivalent boundary condition 
formulation is composed of four steps. Firstly, the axially 
symmetric distribution of the complex pressure amplitude is 
extracted, as explained below, from a two-dimensional 
experimental scan of a low intensity pressure field over the 
plane zz ′= which is parallel to the focal plane and is 
separated from it by a distance of order of wave length. Then 
using this data, the distribution of z-projection of particle 
velocity over the focal plane is calculated with the integral 
formula [4]: 
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At the third step, this distribution is recalculated with the 
modified Fresnel integral formula [3] into the normal velocity 
distribution over the plane z=0 which is tangent to the centre 
point of the spherical radiator:  
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Finally, the resulting distribution is scaled and serves as 
equivalent boundary conditions for (3). Since formulas (7), (8) 
have the form of two-dimensional convolution, a two-
dimensional FFT algorithm is used for correspondent 
calculations.  

In the case of a layered medium the described model is 
generalized as follows. The third step of the equivalent 
boundary condition formulation splits into the corresponding 
number of sub-steps. At the first sub-step, z-projection of 
particle velocity is recalculated with the modified Fresnel 
integral from the focal plane to the preceding interface. Then 
similar recalculation is fulfilled from one interface to another. 
The final sub-step will be the recalculation from the last 
interface to the Z=0 plane. Then the equations (3) are solved 
using acoustical parameters of the respective layer and 
condition of continuity for the velocity harmonics at the 
interfaces.  

III. AXIALLY SYMMETRIC APPROXIMATION OF SCANNED 
DATA

Given the two-dimensional distribution of complex 
pressure amplitude, the axially symmetric approximation of 
the data can be obtained with the least square estimation 
method as follows. 

Consider two-dimensional matrix ( )∆∆= jippij , ,
i=0,1,…,Nx-1, j=0,1,…,Ny-1, where the spatial sampling 
interval ∆ can be set to unit by choosing the corresponding 
measurement system.  

Let the matrix ijp have the following structure: 
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The indexes i0, j0 in (9) point to the center of approximate 
axial symmetry of the matrix ijp , while the matrix 

ijξ describes the deviation of the original field from the 
axially symmetric field P. The function P(r) is assumed to 
have a first derivative within the interval of interest. 
 The objective is to find a sampled version of P(r)
which satisfies the following condition: 
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The values ( )jipappr ,  in (10) have the form:   
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where ( )[ ]., jirk = The sequence kP is sought for 
k=1,2,…,Nr-1, where any integer number which is less than 

( )[ ]
ji

jir
,

,max  can be chosen as the upper limit Nr-1 of the 

sequence. The first member of the sequence is defined 
as

000 jipP = . The sequence is added by 0=
rNP .
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 The set of the all pairs (i,j) which satisfy the 
condition ( ) 1, −≤ rNjir can be divided into 

1−rN nonintersecting classes. Namely, the pair (i,j) belongs 

to the k-th class ( )( )kLji ∈, if and only if 

( ) 1, +<≤ kjirk . After this division, the criterion (10) will 
have the following form: 
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By differentiating (11) with respect to Pi, i=1,2,…,Nr-1, one 
can obtain a system of algebraic linear equations 
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 The right part of the system has the form 
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Index k in (12) runs over the range (1,2,…Nr-1). 

IV. MATERIALS AND METHOD

The experimental data was obtained for 1.03 MHz 
focusing transducer, which comprised spherical piezoelement 
having radius of curvature 54 mm and aperture diameter 84 
mm (half aperture angle of 51 degrees). The piezoelement was 
sealed in the cylindrical housing filled with the mineral oil. 
The housing had an acoustic window made of very thin (0.15 
mm) PVC membrane. The schematic transducer cross-section 
is shown in Fig.1 

Fig.1 Schematic cross-section of the transducer 

All measurements have been performed in NTR Acoustic 
Intensity Measurement System (AIMS), Onda Corp. For low 
and intermediate intensity field mapping we used NHR-0500 
hydrophone (Onda Corp.). For high intensity fields a fiber-
optic hydrophone (FOPH 2000, RP. Acoustics) was used. The 
transducer was loaded by the water. The excitation electric 
signal was generated by the arbitrary function generator 
Agilent 33220A and amplified by the power amplifier 
AG1021, T&C Power Conversion Inc. It had a form of a 
sinusoidal burst having duration of 60 µs and frequency 1.03 
MHz.  

The scan range was limited by the hydrophone sensitivity 
and was in the range ]10,10[, −∈yx mm. Its resolution was 
0.2 mm. The approach for extracting the complex pressure 
amplitudes distribution from the recorded waveforms was 
based on the least square estimation of complex harmonics of 
quasi-periodic signals. This can be done using the FFT over 
the integer number of fundamental periods without any zero 
padding. 

At the first step, low intensity acoustic pressure field 
distribution in the plane Z=58 mm was measured at 10.0 W 
electric input power (hereinbelow, the capital letters mean 
dimensional variables). Since, in general, measured field 
distributions are not axially symmetric, we used approach 
described in section III to symmetrize them. Further, based on 
symmetrical field distribution, the z-projection of velocity 
distribution in the focal plane (Z=54 mm) and then over the 
transducer-water interface plane (Z=40 mm) was 
reconstructed. Based on this distribution the normal velocity 
distribution in the plane Z=0, which is tangent to the centre 
point of the spherical radiator was reconstructed and scaled as 
it has been described above. Resulting data served as the 
equivalent boundary conditions for (3). At the second step the 
model predictions were compared with the data extracted from 
the acoustic pressure waveforms measured for different values 
of the total acoustic power.  

In order to make the calculation of the equivalent 
boundary condition for nonlinear equations (3) more accurate, 
prior to reconstruction the two-dimensional distribution of the 
complex pressure amplitudes extracted from the scan were 
upsampled by factor 4 using the cubic spline interpolation.  

V. RESULTS AND DISCUSSION

In Fig. 2 is shown acoustic pressure signal in the focus at 
127 W acoustic output. Both measured and predicted wave 
forms are plotted for comparison. Fig. 3, 4 present theoretical 
and experimental dependences of pressure harmonics and 
positive\negative peaks respectively on voltage amplitude 
applied to the transducer. The simulation was fulfilled with the 
following parameter settings: Oil - co=1390 m/s, o=835 kg m-

3, o=5.25, µo=1.7, o=7 neper m-1 at 1 MHz; water: c1=1500 
m/s, 1=1000 kg m-3, 1=3.5, µ1=2, o=0.025 neper m-1@1 
MHz.  

In Fig. 5 and 6 are shown theoretical and experimental 
on-axis and radial (in the focal plane) distributions of the 
pressure for the first thee harmonics obtained at 17 W of the 
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total acoustic power. As one can see, the theoretical curves are 
pretty close to the experimental ones. 

Fig. 2. Acoustic pressure in the focus for the total acoustic power 127 W. 

Fig.3 Dependence of the pressure in the focus on applied voltage amplitude 
for three first harmonics  

Fig.4 Dependence of the peak positive/negative pressure in the focus on 
applied voltage amplitude 

Fig.5 On-axis pressure distribution for the first three harmonics.

Fig.5 Radial pressure distribution for the first three harmonics.

Using equation (5) and experimental scan data for the 
pressure distribution in the focal plane we obtained a 
distribution of z components of particles velocity for the first 
three harmonics in this plane. The effective angles for each 
harmonic are calculated as ( )nnn puarccos=θ  and are 
presented in Table 1 together with the theoretical values. The 
experimental and theoretical results are fairly close one to 
another. 

Table 1 
Harmonic number 1 2 3 

n (theory) 36.10 30.36 27.43 
n (experiment) 36.16 30.67 28.05 

The accounting of the connection between pressure and 
particle velocity of each harmonic is important, for example, 
for calculation of the heat deposition caused by the ultrasound 
energy dissipation. The standard approach based on the 
impedance connection between the pressure and particle 
velocity results in the significant overestimation of the heat 
deposition in the case of strongly focused field. 

VI. CONCLUSION

The approach proposed in [2] allows accurate prediction 
of strongly focused HIFU fields based on the measurements of 
low-intensity field distributions. 
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